
CHAPTER 4

Stationary Stochastic Processes

4.1. Weak Definition of a Stochastic Process

This section is devoted to further topics in the theory of stochastic
processes and of their applications. We start with a different, weaker,
definition of a stochastic process, useful in the study of stationary pro-
cesses.

Consider a collection of random variables u(t,ω) ∈ C parametrized
by t.

Definition. We say that u(t,ω) is a weakly defined stochastic
process if for every finite set of points t1, . . . , tn the joint distribution
of u(t1, ω), . . ., u(tn, ω) is known

Ft1,...,tn(y1, . . . , yn) = P (u(t1) ≤ y1, . . . , u(tn) ≤ yn)

The family of functions Ft1,...,tn(y1, . . . , yn) must satisfy some natu-
ral requirements:

(1) F ≥ 0.
(2) F (∞, . . . ,∞) = 1 and F (−∞, . . . ,−∞) = 0.
(3) Ft1,...,tn(y1, . . . , ym,∞, . . . ,∞) = Ft1,...,tm(y1, . . . , ym).
(4) If (i1, . . . , in) is a permutation of (1, . . . , n), then

Fti1 ,...,tin (yi1 , . . . , yin) = Ft1,...,tn(y1, . . . , yn).

A moment of u(t,ω) of order q is an object of the form

Mi1,...,in = E[ui1(t1) . . . uin(tn)],
n∑

j=1

ij = q.

If a stochastic process has finite moments of order q it is process of
order q. The moment

E[u(t,ω)] = m(t)

is the mean of u at t. The function

E[(u(t2, ω)−m(t2))(u(t1, ω)−m(t1))] = R(t1, t2)

is the covariance of u. Let us list the properties of the covariance of u:

(1) R(t1, t2) = R(t2, t1).
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66 4. STATIONARY STOCHASTIC PROCESSES

(2) R(t1, t1) ≥ 0.
(3) |R(t1, t2)| ≤

√
R(t1, t1)R(t2, t2).

(4) For all t1, . . . , tn and all z1, . . . , zn ∈ C
n∑

i=1

n∑
j=1

R(ti, tj)zizj ≥ 0.

The first three properties are easy to establish; the fourth is proved as
follows: For any choice of complex numbers zj, the sum

n∑
i=1

n∑
j=1

R(ti, tj)zizj

is by definition equal to

= E

∣∣∣∣∣
n∑

j=1

(u(tj)−m(tj)) zj

∣∣∣∣∣
2
 ≥ 0,

i.e., to the expected value of a non-negative quantity.

Definition. A weakly defined stochastic process is stationary in
the strict sense if for every t1, . . . , tn and for any T ∈ R

Ft1,...,tn(y1, . . . , yn) = Ft1+T,...,tn+T (y1, . . . , yn).

For a stochastic process which is stationary in this sense all mo-
ments are constant in time, and in particular m(t) = m and R(t1, t2) =
R(t1+T, t2+T ) for all T . Choose T = −t1; then R(t1, t2) = R(0, t2−t1)
and it becomes reasonable to define

R(t2 − t1) = R(0, t2 − t1),

where the function R on the left side, which has only one argument, is
also called R with the hope that there is no ambiguity.

The above properties become, for the new function R:

(1) R(t) = R(−t).
(2) R(0) ≥ 0.
(3) |R(t)| ≤ R(0).
(4) For all t1, . . . , tn and all z1, . . . , zn ∈ C

n∑
i

n∑
j

R(tj − ti)zizj ≥ 0. (4.1)

Definition. A stochastic process is stationary in the wide sense if
it has a constant mean and its covariance depends only on the difference
between the arguments, i.e.,

(1) m(t) = m.
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(2) R(t1, t2) = R(t2 − t1).

Note that if a stochastic process is stationary in the weak sense and
Gaussian then it is stationary in the strict sense (because a Gaussian
process is fully determined by its mean and covariances). Brownian
motion is not stationary. White noise is stationary (but ill-defined
without appeal to distributions).

Let us find examples of stationary stochastic processes. Pick ξ ∈ C
to be a random variable, f(t) a real, non-random function of time, and
consider u(t,ω) = ξf(t). Assume for simplicity that f(t) is differen-
tiable. We determine when a process of this type is stationary in the
wide sense. Its mean is

m(t) = E[ξf(t)] = f(t)E[ξ]

which is constant if and only if f(t) is constant or E[ξ] = 0. The
covariance

R(t1, t2) = E[ξf(t2)ξf(t1)] = E[ξξ]f(t2)f(t1)

must depend only on the difference t2 − t1. Consider the special case
t1 = t2 = t. In this case the covariance E[ξξ]f(t)f(t) must be R(0)
hence f(t)f(t) must be constant. Therefore f(t) is of the form

f(t) = Aeiφ(t).

Now we narrow the possibilities some more. Suppose f has the form
Aeiφ(t). Then

R(t2 − t1) = E[ξξ]eiφ(t2)−iφ(t1) = E[ξξ]eiφ(t1+T )−iφ(t1),

(where we wrote t2 − t1 = T ) must be independent of t1. This is
enforced by the equation:

d

dt
(φ(t + T )− φ(t)) = 0.

Then
dφ

dt
(t) =

dφ

dt
(t + T ) = const = α.

Hence

φ(t) = αt + β

and f is of the form

f(t) = Ceiαt.

We have shown that the process u(t,ω) = ξf(t) is stationary in the
wide sense if f(t) = Ceiαt and E[ξ] = 0 or if f(t) is a constant.
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4.2. Covariance and Spectrum

In the last section we presented an example of a stationary sto-
chastic process in the wide sense, given by u(t,ω) = ξeiλt, where ξ
is a random variable with mean zero. This stochastic process has a
covariance of the form

R(T ) = R(t2, t1) = R(t2 − t1) = E[|ξ|2]eiλT ,

where T = t2 − t1. Now we want to generalize this example. First we
try to construct a process of the form

u(t,ω) = ξ1e
iλ1t + ξ2e

iλ2t.

Then E[u] = E[ξ1]eiλ1t + E[ξ2]eiλ2t which is independent of t if E[ξ1] =
E[ξ2] = 0. The covariance is

E
[
(ξ1e

iλ1t2 + ξ2e
iλ2t2)(ξ1e

−iλ1t1 + ξ2e
−iλ2t1)

]
= E

[|ξ1|2eiλ1T + |ξ2|2eiλ2T + ξ1ξ2e
iλ1t2−iλ2t1 + ξ1ξ2e

iλ2t2−iλ1t1
]

which can be stationary only if E[ξ1ξ2] = 0. Then u(t,ω) is stationary
and

R(T ) = E[|ξ1|2]eiλ1T + E[|ξ2|2]eiλ2T .

More generally, a process u =
∑

j ξjeiλjt is wide sense stationary if

E[ξjξk] = 0 when j &= k and E[ξi] = 0. In this case

R(T ) =
∑

E
[|ξj|2

]
eiλjT .

This expression can be rewritten in a more useful form as a Stieltjes
integral. Recall that when g is a non-decreasing function of x the
Stieltjes integral of a function f with respect to g is defined to be∫

fdg = lim
max{xi+1−xi}→0

∑
f(x∗i )[g(xi+1)− g(xi)]

where xi ≤ x∗i ≤ xi+1. If g is differentiable then∫ b

a

fdg =

∫ b

a

fg′dx.

Suppose g(x) is the step function:

g(x) =

{
0 x < c

q x ≥ c
,
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with a ≤ c ≤ b. Then
∫ b

a fdg = f(c)q. Now we define the function
F = F (k) by

F (k) =
∑

{j|λj≤k}
E[|ξj|2]

i.e., F (k) is the sum of the expected values of the squares of the ampli-
tudes of the complex exponentials with frequencies less than k. R(T )
becomes

R(T ) =

∫ +∞

−∞
eikT dF (k).

We shall now see that under some technical assumptions, this re-
lation holds for all wide sense stationary stochastic processes. Indeed,
we have:

Theorem 4.1. (Khinchin)

(1) If R(T ) is the covariance of a weakly defined wide sense sta-
tionary stochastic process such that

lim
h→0

E
[|u(t + h)− u(t)|2] = 0

then R(T ) =
∫

eikT dF (k) for some non-decreasing function
F (k).

(2) If a function R(T ) can be written as
∫

eikT dF (k) for some non-
decreasing function F , then there exists a weakly defined wide
sense stationary stochastic process, satisfying the condition in
part (1) of the theorem, that has R(T ) as its covariance.

The proof of Khinchin’s Theorem follows from (4.1). If dF (k) =
φ(k)dk, then R(T ) =

∫
eikT φ(k)dk and φ(k) is called the spectral den-

sity of the process. Thus Khinchin’s theorem states that the covariance
function is a Fourier transform of the spectral density. Hence, if we
know R(T ) we can compute the spectral density by

φ(k) =
1

2π

∫ +∞

−∞
e−ikT R(T )dT.

Example. In the case of white noise we have R(T ) = δ(T ). Its
spectral density is φ(k) = 1/2π, thus all frequencies have the same
amplitude. The adjective “white” comes from the fact that in white
light all frequencies are present with the same amplitude. Any random
signal which is not white noise is called colored noise.
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4.3. Application: The Inertial Spectrum of Turbulence

.
To illustrate these constructions, we now derive the “inertial range”

spectrum of fully developed turbulence. The equations of motion will
not be written down because they will not be used directly.

Consider turbulence far from walls, with the Reynolds number
Re = UL/ν very large, where U is a typical velocity in the flow, L
is a length scale for the turbulence, and ν is the viscosity; the dimen-
sionless number Re measures the amount by which the “inertial ”, i.e.,
nonlinear, terms in the equations of motion dominate the viscous dis-
sipation, and is large in fully developed turbulence. The movement
of energy from scale to scale, i.e., from one k to another, is described
by the nonlinear terms in the equation of motion. The flow is driven
by large scale forcing (for example, in the case of meteorolgy, by the
rotation of the earth around its axis and around the sun); one assumes
that by the time the energy has moved to large wave numbers k (i.e.,
small wavelengths) the geometry of the forcing has been forgotten and
the flow can be viewed as approximately homogeneous (translation in-
variant) and isotropic, (rotation inavariant) and its spectral properties
are universal (i.e., independent of specific geometry and forcing).

The velocity field in three space dimensions is a vector quantity:
u = (u1, u2, u3). One can define a correlation tensor

Rij(r) = E[ui(x + r)uj(x)],

and find

Rij(r) =

∫ ∞

−∞
dFij(k),

where k = (k1, k2, k3). Without loss of generality in what follows one
can write dFij(k) = Ψij(k)dk1dk2dk3 (this is so because all we will care
about is the dimensions of the various quantities, which is not affected
by their possible lack of smoothness). Finally, one can define

E(k) =

∫
k2
1+k2

2+k2
3=k2

(Ψ11 + Ψ22 + Ψ33) dA(k).

E(k) is the average of the trace of the tensor Ψij(k) over the sphere of
radius k in wave number space and is a function of k =

√
k2

1 + k2
2 + k2

3

only. One can see from the various identities that have been derived
that E[u2] =

∫∞
0 E(k)dk, where u2 = u2

1+u2
2+u2

3. E(k) is the spectrum
of the flow.

The energy is proportional to the square of the velocity while en-
ergy dissipation, modelled in the equations of motion by the Laplace
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operator acting on the velocity, is proportional to the square of the
derivatives of the velocity; in spectral variables, (i.e., after Fourier
transformation), the energy is proportional to the square of û(k) while
the dissipation is proportional to the square of kû(k), where û is the
(random) Fourier transform of the velocity u = u(x). It is plausible
that when Re is large the energy resides in a range of k’s disjoint from
the range of k’s where the dissipation is taking place, and indeed ex-
perimental data show it to be so; specifically, there exist wave numbers
k1, k2 such that∫ k1

0

E(k)dk ∼
∫ ∞

0

E(k)dk,

∫ ∞

k2

k2E(k)dk ∼
∫ ∞

0

k2E(k)dk,

with k1 ( k2. The range of k’s such that k1 < k < k2 is the “inertial
range” of wave numbers; the name is a bit of a misnomer because it
implies that in that range the mechanics is purely “inertial”, free of
viscosity effects, but we shall see that this is not so. This is the range
of wave numbers k we now focus on.

We will be relying on dimensional analysis. Suppose a variable a
is a function of variables a1, a2, . . . , am, b1, b2, . . . , bk, where a1, . . . , am

have independent units. For example a1 could have the dimension of
length measured in units L (say kilometers) and a2 could be a time,
measured in units T of time (say seconds), while the units of b1, . . . , bk,
can be formed from the units of a1, a2, . . . , am; in the example just
used, b1 could be a velocity, whose units are L/T . Then there exist
dimensionless variables

Π =
a

aα1
1 · · · aαm

m

, Πi =
bi

aαi1
1 · · · aαim

m
, i = 1, . . . , k,

where the αi, αij are simple fractions, such that Π is a function of the
Πi:

Π = Φ(Π1, . . . , Πk).

This is just a consequence of the requirement that a physical rela-
tionship be independent of the size of the units of measurement. At
this stage nothing can be said about the function Φ. Now suppose
the variables Πi are small or large, (the two cases are indistinguish-
able, because an unknown function of x is also an unknown function
of 1/x), and assume that the function Φ has a non-zero finite limit as
its arguments tend to zero or to infinity; then Π ∼ constant, and one
finds a power monomial relation between a and the ai: a = aα1

1 · · · aαm
m .

This is a “complete similarity relation. If the function Φ does not
have the assumed limit, it may happen that for Π1 small or large,
Φ(Π1) = Πα

1 Φ1(Π1) + . . ., where the dots denote lower order terms, α
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is a constant, the other arguments of Φ have been omitted and Φ1 has
a finite non-zero limit. One can then obtain a monomial expression for
a in terms of the ai and bi, with undetermined powers which must be
found by means other than dimensional analysis. The resulting power
relation is an incomplete similarity relation. The exponent α is known
in the physics literature as an anomalous scaling exponent; in physics
incomplete similarity is usually discussed in the context of the renor-
malization group, see Chapter 5. Of course one may well have functions
Φ with neither kind of similarity.

We now apply these scaling ideas to the spectrum. The spectrum
in the inertial range E(k) is a function of k, of the viscosity ν, of the
length scale L, of the amplitude U of the typical velocity in the flow,
and of the rate of energy dissipation ε. That last variable belongs
here because energy is transferred from the low k domain through the
inertial range into the large k domain where it is dissipated; the fact
that ε belongs in the list was the brilliant insight of Kolmogorov.

Our basic units are the units of length L and of time T . The units of
the viscosity are L2/T , those of ε L2/T 3, those of k L, while the identity
E[u2] =

∫
E(k)dk show that the units of E are L3/T 2. Dimensional

analysis yields E(k)/(ε−2/3k5/3) = Φ(Re, Lk) for some unknown func-
tion Φ of the two large arguments Re and Lk; Re is large because this is
the condition for fully developed turbulence to appear and Lk is large
in the inertial range of scales. If the function Φ has a finite non-zero
limit C as its arguments grow one can deduce E(k) = Cε2/3k−5/3—the
famous Kolmogorov-Obukhov scaling law for the inertial range of fully
developed turbulence, the cornerstone of turbulence theory.

This law is not fully satisfactory, for various reasons, and various
correction schemes have been proposed over the years. In recent years
it has been shown that it is mathematically satisfactory, as well as in
agreement with experiment, to set in the relation above

Φ(Re, Lk) = C(Re)ε2/3k−5/3(Lk)d/ln(Re),

where C(Re) is a function of Re and d is a positive constant.

4.4. Random Measures

We now embark upon a development which is a little bit outside
of the main line of this course; it has wide applications but will not
be used further in these notes. In particular, we will show that ar-
bitrary wide-sense stationary processes can be represented as convo-
lutions of non-random functions with certain simple processes (often
Brownian motion). An important special case of this representation is
the stochastic Fourier transform, which exists whenever the covariance
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function exists, but does not require that the process itself have sam-
ples to which the standard Fourier transform can be applied; this is a
key building block in the study of turbulence, signal processing, and
quantum theory.

Given a probability space (Ω,B, P ) consider the set of random vari-
ables f(ω), where ω is a random variable, such that E[ff̄ ] < ∞. We
refer to this set as L2(Ω,B, P ). We now construct a one-to-one map-
ping L2(Ω,B, P ) → L2(A, µ), where A is a subset of the t-axis and µ
is a measure on A. Consider A, an algebra of subsets of A, given by

A =

{
Ai ⊂ A | C(Ai) ∈ A and

n⋂
i=1

Ai,
n⋃

i=1

Ai ∈ A
}

where n is finite. (An algebra is much like a σ-algebra, with the ex-
ception that we do not require that the union of a countably infinite
family of subsets belong to the algebra, a detail which is important to
a rigorous analysis, but which we will omit here.)

Now consider the triple (A,A, µ) where µ is a rule which to each
subset Ai ∈ A assigns a number such that

(1) µ(Ai) ≥ 0.
(2) µ(A) = 1.
(3) µ(∅) = 0.
(4) Ai ∩ Aj = ∅ ⇒ µ(Ai ∪ Aj) = µ(Ai) + µ(Aj).

(Again, note that we are concerned only with finitely many Ai.) Next
construct a random variable ρ = ρ(Ai, ω) where Ai ∈ A and ω ∈ Ω
(remember that a random variable is a function defined on Ω) which
has the following properties:

(1) Ai ∩ Aj = ∅ ⇒ ρ(Ai ∪ Aj, ω) = ρ(Ai, ω) + ρ(Aj, ω).
(2) ρ(Ai, ω) is square integrable, i.e., E[ρ(Ai, ω)ρ̄(Ai, ω)] <∞.
(3) ρ(∅, ω) = 0.
(4) Ai, Aj ⊂ A⇒ E[ρ(Ai, ω)ρ̄(Aj, ω)] = µ(Ai ∩ Aj).

Note that the properties listed above imply that µ(A) ≥ 0, since then

µ(A) = µ(A ∩ A) = E[ρ(A, ω)ρ̄(A, ω)] ≥ 0.

µ is called the structure function of ρ. Just as a stochastic process is a
function of both ω and t, so is a random measure a function of both ω
and the subsets Ai of A.

Now define χAi = χAi(t), the characteristic function of the subset
Ai of the t-axis, to be

χAi =

{
1 t ∈ Ai

0 otherwise
,
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and consider a function q(t) of the form

q(t) =
∑

ciχAi(t).

We consider the case where {Ai} is a finite partition of A, i.e., there are
only finitely many Ai, Ai ∩Aj = ∅ for i &= j, and

⋃
Ai = A. Thus q(t)

takes on only a finite number of values. To this function q(t) assign
the random variable

f(ω) =
∑

ciρ(Ai, ω).

Hence each characteristic function of a subset is replaced by the random
variable which the random measure assigns to the same subset; thus
this substitution transforms a function of t into a function of ω, i.e.,
into a random variable.

Now consider the product q1(t)q2(t) of two functions of the form

q1 =
n∑

j=1

cjχAj(t), q2 =
m∑

k=1

dkχBk
(t)

where the {Bi} is another finite partition of A. It is not necessary
for n and m to be equal. There is a finite number of intersections
of the Ai’s and Bi’s and on each of these subsets the product from
q1q2 =

∑n
j=1 cjχj(Aj)×

∑m
k=1 dkχk(Bk),

q1q2 =

(
n∑

j=1

cjχj(Aj)

)(
m∑

k=1

dkχk(Bk)

)
takes on a constant value cjdk. Thus the same construction allows us
to assign a random variable f1f2 to the product q1q2. Since

f1(ω) =
∑

cjρ(Aj, ω), f2(ω) =
∑

dkρ(Bk, ω),

we conclude that

E[f1f2] = E

[
n∑

j=1

m∑
k=1

cjdkρ(Aj, ω)ρ(Bk, ω)

]
(4.2)

=
n∑

j=1

m∑
k=1

cjdkE [ρ(Aj, ω)ρ(Bk, ω)]

=
n∑

j=1

m∑
k=1

cjdkµ(Aj ∩Bk)

=

∫
q1q2µ(dt).



4.4. RANDOM MEASURES 75

Thus we have established a mapping between random variables with
finite mean squares and functions of time with finite square integrals
(i.e., between the random variables f(ω) and functions q(t) such that∫

q1(t)q2(t)µ(dt) is finite.) Although we have defined the mapping only
for functions q(t) =

∑
ciχAi(t), an argument that we omit enables us

to extend the mapping to all random variables and functions of t with
the square integrability properties listed above.

Example. We now show in detail how this construction works for
a very special case. Say we are given a probability space (Ω,B , P ) and
three subsets of the t axis: A1 = [0, 1), A2 = [1, 3), and A3 = [3, 31

2 ].
Each Ai is assigned a random variable ρi(ω) = ρ(Ai, ω) which has mean
0 and variance equal to the length of Ai. For example, ρ1(ω) has mean
0 and variance 1, etc. The variables ρ1, ρ2, ρ3 are independent, and
E[ρiρj] = 0 for i &= j where E[ρ2

i ] is the length of the ith interval.
Moreover,

χ1 =

{
1, 0 ≤ t < 1

0, elsewhere
,

χ2 =

{
1, 1 ≤ t < 3

0, elsewhere
,

and

χ3 =

{
1, 3 ≤ t ≤ 31

2

0, elsewhere

where
∫

χiχjdt = 0 for i &= j and
∫

χ2
i dt is the length of the ith interval.

Now take a function of the form q1(t) =
∑

i ciχi(t) where the ci’s
are constants. Then

q1(t)→ f1(ω) =
3∑

i=1

ciρi(ω).

Suppose we have another function q2(t)

q2(t) =
3∑

j=1

djχj(t)→ f2(ω) =
3∑

j=1

djρj(ω).

Then

E[f1f2] = E

[
3∑

i=1

3∑
j=1

cidjρiρj

]
=

3∑
j=1

cjdjE
[
ρ2

j

]
=

3∑
j=1

cjdjµ(Aj)
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where µ(Aj) is the length of Aj. Notice also that∫ 3 1
2

0

q1(t)q2(t)dt =

∫ 3 1
2

0

3∑
i=1

3∑
j=1

cidjχi(t)χj(t) =
∑

j

cjdjµ(Aj)

which verifies that q(t)→ f(t) so E[f1f2] =
∫

q1(t)q2(t)µdt as in (4.2).

Now approximate every square-integrable function on A (i.e., such
that

∫
A qq̄ dµ is finite) by a step function, construct the corresponding

random variable, and take the limit, as the approximation improves, of
the sequence of random variables obtained in this way. This makes for
a mapping of square integrable functions on A onto random variables
with finite mean squares. This mapping can be written as

f(ω) =

∫
q(s)ρ(ds, ω)

where the variable t has been replaced by s for convenience. Now view
a stochastic process u as a family of random variables labelled by the
parameter t (i.e., there is a random variable u for every value of t) and
apply the representation just derived at each value of t, so

u(t,ω) =

∫
q(t, s)ρ(ds, ω).

Assume u(t,ω) is wide-sense stationary. Then the covariance of u is

R(t2 − t1) = E[u(t1, ω)u2(t2, ω)]

= E

[∫
q(t1, s)ρ(ds1)

∫
q̄(t2, s2)ρ(ds2)

]
= E

[∫
q(t1, s1)q̄(t2, s2)ρ(ds1)ρ̄(ds2)

]
=

∫
q(t1, s1)q̄(t2, s2)E[ρ(ds1)ρ̄(ds2)]

=

∫
q(t1, s)q̄(t2, s)µ(ds).

One can show that the converse is also true: if the above holds then
u(t,ω) =

∫
q(t, s)ρ(ds, ω) with E[ρ(ds)ρ̄(ds)] = µ(ds). Note that in all

of the above equality holds in a mean-square (L2) sense and thus little
can be said about the higher moments.

Example. If u = u(t,ω) is a wide-sense stochastic process then

R(t1, t2) =

∫
eik(t2−t1)dF (k).
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Let q(t2, k) = eikt2 and q̄(t1, k) = e−ikt1 (taking k = s). Then

u(t,ω) =

∫
eiktρ(dk,ω) (4.3)

where E[ρ̄(dk)] = dF (k). We have just shown that dF (k) is the energy
density in the interval dk. The Fourier transform of u does not exist
in the usual sense (i.e.,

∫
u(t,ω)eiktdt does not exist), but for (4.3) it

is sufficient for E[|u(t)|2] to exist for each t.

Example. Suppose dF (k) = φ(k)dk. Then∫
eik(t2−t1)dF (k) =

∫
eikt2

√
φ(k)e−ikt1

√
φ(k) dk.

Recall that φ(k) ≥ 0. Write
√

φ(k) = ĥ(k) = ĥ(t), where h(t) is the

inverse Fourier transform of ĥ(k). Recall that for a function h(t) we
have:

̂h(t− t1) = e−ikt1ĥ(k),

so the covariance R(t1, t2) can be written

R(t1, t2) =

∫
̂h(t− t2) ̂h(t− t1)dk.

Since the Fourier transform preserves the inner products we have

R(t1, t2) =

∫
h(t− t2)h(t− t1)dt,

and by changing t to s we obtain

R(t1, t2) =

∫
h(s− t2)h(s− t1)µ(ds),

where µ(ds) = ds. Applying our representation, we get u(t,ω) =∫
h(s− t)ρ(ds) where E[|ρ(ds)|2] = ds. Note that the random measure

constructed as increments of Brownian motion at instants ds apart has
this property. Thus, any wide-sense stationary stochastic process with
dF (k) = φ(k)dk can be approximated as a sum of translates (in time)
of a fixed function, each translate multiplied by independent Gaussian
random variables. This is the “moving average” representation.

4.5. Prediction for Stationary Stochastic Processes

Consider a stationary stochastic process u(t,ω) and suppose we are
given the values U1, U2, . . . , Un of u(t,ω) for s ≤ t. (For clarity we
denote by capital letters values that are known.) The question we will
address in this section is how to predict a value for u(t + T,ω) based
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on the information given. For simplicity we shall do so only for a
stationary random sequence.

Definition. A stationary random sequence is a collection u(t,ω)
of random variables for t = 1, 2, 3, . . . as well as for t = −1,−2,−3, . . .
such that the joint distribution of any subset is known, subject to the
obvious compatibility conditions, and such that all the distributions
are invariant under the transformation t→ t + T for T integer.

Assume E[u(t)] = 0. The covariance

R(T ) = E[u(t + T )u(t)]

where T ∈ Z satisfies, as before:

(1) R(0) ≥ 0.
(2) |R(T )| ≤ R(0).
(3) R(−T ) = R(T ).
(4)

∑
j,l R(j − l)ajal ≥ 0.

If u(t,ω) = ξ(ω)f(t) is stationary, then f(t) = Ceikt, with t integer.
But note that since t is an integer, ei(k+2π)t = eikt, so we can assume
0 ≤ k ≤ 2π. The covariance then has the spectral representation

R(T ) =

∫ π

−π

eikT dF (k).

For simplicity we assume that f = F ′(k) exists so that

R(T ) =

∫ π

−π

eikT f(k)dk.

Recall that if f(k) is a periodic function with period 2π then its Fourier
transform is

f(k) =
∞∑

n=−∞
ane

ink,

where

an =
1

2π

∫ π

−π

f(k)e−inkdk.

Note that R(−n) is the nth Fourier component of f(k) and

f(k) =
1

2π

∞∑
n=−∞

R(n)e−ink.

(The factor 1/2π is broken up differently from what was done earlier
for convenience.)
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Consider the problem of finding a good estimate for u(t + m, ω)
when we have values U(t− n), U(t− (n− 1)), . . ., U(t− 1). We would
like to find a random variable ũ(t + m, ω) such that

E
[|u(t + m,ω)− ũ(t + m, ω)|2]

is as small as possible. We know from earlier work that

ũ(t + m,ω) = E[u(t + m,ω)|u(t− 1), u(t− 2), . . . , u(t− n)].

The way to evaluate ũ is to find a basis {φi} in the space Q of functions
of {u(t− n), . . . , u(t− 1)}, expand ũ in this basis, i.e.,

ũ =
n∑

j=1

ajφj(u(t− 1), . . . , u(t− n)),

and calculate the coefficients aj of the expansion. This is hard in gen-
eral. We simplify the problem by looking only for the best approxima-
tion in the span of {u(t− 1), . . . , u(t− n)}, i.e., we look for a random
variable

ũ(t,ω) =
n∑

j=1

aju(t− j, ω).

This is called linear prediction. Note that the span of u(t − j, ω), call
it L, is a closed linear space, and therefore the best linear prediction
minimizes

E
[|u(t + m, ω)− ũ(t + m, ω)|2]

for ũ in L. What we have to do is to find {aj}n
j=1, such that

E

∣∣∣∣∣u(t + m, ω)−
n∑

j=1

aju(t− j, ω)

∣∣∣∣∣
2
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is as small as possible. We have

E
[|u− ũ|2] =

E

(
u(t + m)−

∑
j

aju(t− j)

)(
u(t + m)−

∑
l

alu(t− l)

)
= E

[
u(t + m)u(t + m)−

∑
l

alu(t + m)u(t− l)

−
∑

j

aju(t + m)u(t− j) +
∑

j

∑
l

ajalu(t− j)u(t− l)

]

= R(0)− 2Re

(∑
j

ajR(m + j)

)
+

∑
j

∑
l

ajalR(l − j),

which is minimized when

∂E [|u− ũ|2]
∂aj

= −R(m + j) +
n∑

l=1

alR(j − l) = 0 (4.4)

for j = 1, . . . , n. The uniqueness of the solution of the system (4.4) and
the fact that this procedure gives a minimum are guaranteed by the
orthogonal projection theorem for closed linear spaces (see Section 1.1).

Rewrite (4.4) in terms of the Fourier transform. The spectral rep-
resentation of R(T ) is

R(T ) =

∫ π

−π

eikT dF (k).

Assume that dF (k) = f(k)dk. Then (4.4) becomes∫ π

−π

(
−ei(j+m)k +

n∑
l=1

ale
i(j−l)k

)
f(k)dk = 0.

Putting eijk outside the parentheses we get∫ π

−π

eijk

(
eimk −

n∑
l=1

ale
−ilk

)
f(k)dk = 0. (4.5)

We now solve this equation using complex variables. Let g(z) be a
complex valued function of a complex variable z = x + iy and C be a
closed curve bounding a simply connected region.

(1) If g(z) is analytic on and inside C then
∮

C g(z)dz = 0.
(2) If g is an analytic function defined on C then there exists a

function f ∗ analytic on and inside C such that f = f ∗ on C.
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(3) Suppose g is analytic outside C and g(∞) = 0. Then g can be
written in the form g(z) =

∑
anz−n.

(4) If g is bounded and analytic everywhere then g is constant.

Return to formula (4.5). Our aim is to determine the set of coeffi-
cients al, l = 1, . . . , n, which will give us the best linear approximation
ũ(t + m, ω) to u(t + m,ω). On the unit circle |z| = 1 z may be written
as z = eik where −π ≤ k ≤ π. So the function

Φ(k) =
n∑

l=1

ale
−ikl

can be thought to be an analytic complex function defined on the unit
circle. Suppose f(k) is smooth enough on the unit circle. Let Φ∗(z)
and f ∗(z) be the extensions of the functions Φ and f to the complex
plane,

Φ∗(z) =
a1

z
+

a2

z2
+ . . . +

an

zn
.

Note that Φ∗(∞) = 0. Then (4.5) can be written as∫
|z|=1

zj (zm − Φ∗(z)) f ∗(z)dz = 0.

In the case n =∞ we seek Φ∗(z) that satisfies:

(1) Φ∗(z) is convergent on the unit circle.
(2) Φ∗(∞) = 0.
(3) Φ∗(z) is analytic outside the unit circle.
(4) (zm−Φ∗(z))f ∗(z) is analytic on and inside the unit circle (i.e,

it may be written as a Taylor series there).

If we find such a function Φ∗, the coefficient al in its expansion will
satisfy (4.5).

Consider an example. Suppose that we are dealing with a stationary
random sequence whose covariance is

R(T ) =

{
CaT , T > 0

Ca−T , T < 0
,

where C > 0 and 0 < a < 1. We have seen that the covariance of any
stationary process must satisfy the conditions:

(1) R(0) > 0.
(2) |R(T )| ≤ R(0).
(3) R(−T ) = R(T ).
(4)

∑
i,j R(i− j)zizj ≥ 0 for any z ∈ C (R is positive definite).
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It is first necessary to check that the problem makes sense, that is,
that there exists a stationay process which has the given covariance—
not every function is the covariance of some stationary process. We
have also seen that condition (4) holds if R is the Fourier transform
of a non-negative function. To check this we just calculate the Fourier
transform f of R:

f(k) =
1

2π

∞∑
n=−∞

e−inkR(n) =
C

2π

∞∑
n=1

einkR(n)+
C

2π
+

C

2π

∞∑
n=1

e−inkR(n).

Hence

f(k) =
C

2π
(1− a2)

1

(eik − a)(e−ik − a)
> 0.

Therefore there exists a stationary stochastic sequence such that this
R is its covariance.

The extension of f(k) to the complex plane is:

f ∗(z) = C1
1

(z − a)(z−1 − a)
=

C1z

(z − a)(1− az)
,

where C1 = (C/2π)(1− a2). As was shown above, the function

(zm − Φ∗(z))
z

(z − a)(1− az)

has to be analytic inside the unit circle.
Consider the special case m = 1. To make the function

(z − Φ∗(z))
z

(z − a)(1− az)

analytic inside the unit circle we should choose Φ∗(z) such that

(1) Φ∗(a) = a and
(2) Φ∗(z) = z−1Ψ(z), where Ψ(z) is analytic inside the unit circle.

It also follows from the previous discussion that Ψ(z) must be analytic
outside the unit circle and vanish at infinity. Consequently Ψ(z) must
be constant. To satisfy (1) Ψ must equal a2. Thus

Φ∗(z) =
a2

z
.

And hence the best approximation of u(t + 1, ω) is

u(t + 1, ω) = a2u(t,ω).

The best guess of the next value of the sequence is a2 times the last
value, where a is the factor by which the covariance decreases over a
unit time interval.
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4.6. Data Assimilation

We now turn to the topic of data assimilation, which could have
been discussed at the end of Chapter 3 but which has been set here so
that the presentation can be read along with the related discussion of
prediction for stationary processes in the previous section.

There are many situations where one wants to make predictions on
the basis of models which are not accurate enough, but which can be
supplemented by current data. The canonical example is meteorology,
where at any one time one has an incomplete description of the current
weather, the equations of motion provide an incomplete description of
the atmosphere, but data are coming in all the time. The use of data
together with a model to assess the current state of a system and/or
to make predictions is called “data assimilation”, and the algorithms
for doing that are called “filters.”

A useful model of a situation where data assimilation is needed
consists of a stochastic differential equation

d(x) = f(x, t)dx + g(x, t)dw, (4.6)

where x = (x1, x2, . . . , xn) is an n-dimensional vector, dw is an n-
dimensional BM, f is an n-dimensional vector function, and g is a
scalar (i.e., an n by n diagonal matrix of the form gI, where g is a
scalar and I is the identity matrix). The BM encapsulates all that is
not known in this model. The initial data x(0) are assumed given and
they may be random as well.

As the experiment unfolds it is observed, and the values yi of a
“measurement process” are recorded at times ti = iδ, where δ is a
fixed time interval; they are related to the evolving “state” x(t) by

yi = h(xi, ti) + GWi, (4.7)

where h is a k-dimensional vector, where in principle k ≤ n (but in what
follows we assume k = n), h is a nonlinear function, G is a diagonal
matrix with non-zero diagonal terms, xi = x(iδ), and Wi is a vector
whose components are independent Gaussian variables of mean zero
and variance 1, independent also of the BM’s in the equation. Equa-
tion (4.7) says that the observations are noisy, with Gaussian noise.
Now the problem is to estimate x on the basis of equation (4.6) and
the observations yi. We are interested in cases where simply rerun-
ning the problem with a different sample of BM will not do because
the different samples differ more than we can tolerate; the observations
should narrow down the range of possible x(t). The solution of the
problem is of course the process x̂ = E[x(t)ȳ(t)], where ȳ(t) is the
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sequence y1,y2, . . . for indices j such that jδ ≤ t. This, as we know,
is the best approximation of x(t) given ȳ.

If the system (4.6) is linear and the data are Gaussian (or, as a spe-
cial case, not random) then the solution of the problem is a Gaussian
process. Its means and covariances can be calculated from those of the
various functions that appear in the equation. This is the “Kalman
filter”, or “Kalman-Bucy filter”, a mainstay of engineering. It provides
a non-random solution of a random problem. This is not the place to
present the algebra involved in deriving the full Kalman filter proce-
dure, and we are content with a simple example as an illustration.

Suppose equation (4.6) is scalar and for the form reduces to dx = 0,
i.e., the data x(0), which we take as Gaussian with mean 0 and variance
σ, do not change in time, x(t) = x(0) (we write x rather than x for
a scalar variable). Suppose the observation process is yi = xi + gWi,
with the Wi indepedent Gaussian variables of mean zero and variance
1. The variance of y1 is σ + g2, the projection of x1 on y1 is y1σ/(σ +
g2) = x̂, the filtered estimate. Note the following: If the variance
g of the observation noise is large the observation adds little to the
accuracy of the simplest estimate unaided by observations in which
the variable x1 is estimated by its mean; on the other hand if the
variance of the observation noise is small, the observation is accurate,
and the estimate reduces to equating the estimate to the observation.
Thus the filter neatly blends in the information from the “equation”
and the information from the observation, weighing their reliability as
measured by the variances of the noises.

Now consider the general nonlinear case of equation (4.6). We have
to estimate the variables x(t) and the natural thing to do is try to
evaluate their probability density as it evolves in time. The initial
datum x is known and so is its probability density, so all we have to
do is evaluate sequentially the density of xi+1 assuming that we know
the density of xi.

Let Pi be the probability density of x at time iδ (taking into ac-
count the observations before that time and at that time). To find the
probability density of x at times iδ < t < (i+1)δ (before any more ob-
servations come in) one can sample the density Pi, evolve the samples
independently by (4.6), and whenever needed reconstruct a density by,
for example, parametric estimation (see Section 2.5). The challenge is
to modify the density at time (i + 1)δ, when new data must be taken
into account. This can be done by Bayesian estimation (see Chapter 2).
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Bayes theorem says that

P (x|ȳi+1) =
P (yi+1|x(t))P (x|ȳi)∫
P (yi+1|x)P (x|ȳi)dx

. (4.8)

Where P (x|ȳn) is the probability density determined from equation (4.6)
taking into account the data up to and including time iδ but not the
data at (i+1)δ, P (yi+1|x(t)) is the probability of finding the data if one
knows the value x((i+1)δ of the unknown vector x, and the integral in
the denominator is what is needed to normalize the probabilities. The
connection with Bayesian estimation is made by taking P (x|ȳi), the
density in which the new data have not yet been taken into account,
as the prior density, and then taking the density after the data have
been used as the posterior density.

In words, formula (4.8) says that the new density given the new
data is the product of the probability of getting the data if the val-
ues of the samples of the distribution were known, multiplied by the
prior probability for samples of the distribution, the whole thing prop-
erly normalized. The probability of getting the data if the values of
the samples were known can be obtained from the observation equa-
tion (4.7):

P (yi ≤ xi < yi + dyi) =

exp

(
si − h(x, t)

gii

)
√

πgii
dsi, (4.9)

where gii is a diagonal entry of the matrix G. The formula (4.8) can be
evaluated as follows: We can find n samples of Pi, and evolve them by
equation (4.6). The density that one can in principle reconstruct from
the positions of these samples after evolution does not take into account
the new information at time (i + 1)δ, and we will use it as the prior
density at the new time. The new information (i.e., the observation)
at the time (i + 1)δ makes it possible to assign a probability to each
new sample position; if the first sample, for example, is at position x1;
then its probability is given by formula (4.9).

Before taking the data into accounts assign to each sample a weight,
say the weight 1. Take the data into account by replacing these uniform
weights by Z−1pnew

i , where the pnew
i come from formula (4.9)—they take

into account the fact that the new observations make some sample
positions that are far from the observation unlikely and those that are
near the observation more likely. Choose Z so that the sum of the
new weights is 1. The sample positions in x-space are unchanged.
We now have samples whose positions have been determined by the
prior density and that have weights that take the new observation into
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account. We can now estimate the new posterior density at time (i+1)δ
from this information. One can surely estimate from these positions
and weights the most likely state of the system given the observations.

One cannot use the same samples over and over and at the begin-
ning of each step one has to resample the new density Pi+1 or else the
algorithm goes haywire. This should be obvious here: Some of the
samples get very low weights after the new data have been taken into
account; if the new densities are not resampled then after a few steps
one is dealing with samples all of which have weights near zero. More
generally, resampling is a key feature of many Monte-Carlo schemes.

This is the Bayesian filter. The samples are often called “particles”
in the literature, and this filter is also known as a “particle filter.”
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